OXIDATION OF ALCOHOLS WITH OXOPEROXOBIS(N-PHENYLBENZOHYDROXAMATO)MOLYBDENUM(VI)

Hiroki Tomioka, Kazuhiko Takai, Koichiro Oshima*, and Hitosi Nozaki Department of Industrial Chemistry, Faculty of Engineering Kyoto University, Yoshida, Kyoto 606, Japan

Koshiro Toriumi

The Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

Abstract: The title complex oxidizes primary and secondary alcohols to the corresponding carbonyl compounds. Stereoselective epoxidation of allylic alcohols is also described.

We wish to report here the isolation of a new oxoperoxomolybdenum(VI) compound and the reaction of the complex with simple alcohols and olefinic alcohols.

A mixture of $MoO_2(acac)_2$ (1.61 g, 4.9 mmol) and hydroxamic acid PhCON(Ph)OH (2.10 g, 9.8 mmol) in benzene (100 ml) was stirred for 3 h at 25°C. Filtration of the deposited solid gave $MoO_2(PhCON(Ph)O)_2$ (I) (mp. 178°C (dec), 2.26 g, 83% yield) as white mossy powder.¹ The dioxomolybdenum (I) (2.26 g, 4.1 mmol) was suspended in dichloromethane (15 ml) and treated with excess H_2O_2 (30%, 1.2 ml). A clear orange-yellow solution was obtained after 1 h at 25°C and the stirring was continued for an additional 1 h. Workup (CH_2Cl_2 , H_2O) and recrystallization (hexane- CH_2Cl_2) gave orange-yellow crystals II (mp. 150°C (dec), 1.76 g, 76% yield).²,3

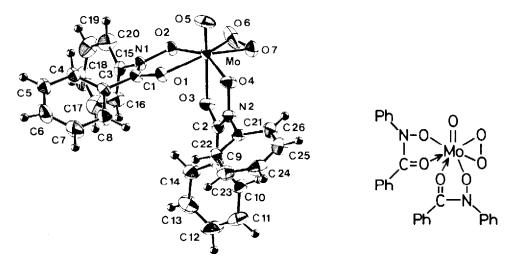


Fig 1. A perspective drawing of the oxoperoxobis(N-phenylbenzohydroxamato)molybdenum(VI) complex with the atom numbering scheme.⁵

	Alcohol	Mo co threo ^d (trans) %	$er_{2}thro$ ^u	Mo comple	x I/ ^t Bu00H ^b erythro (eis) g	Mo(CO) ₆ / threo (trans) %	
٢		7	93	35	65	44	56
2	ОН	9	91	40	60	35	65
3	HO	б	94	6	94	16	84
4	OH	27	73	71	29	62	38
5	ОН ОН	70	30	94	6	95	5
6	OH-OH	<0.5	>99.5	<0.5	>99.5	2	98
7	ОН	<0.5	>99.5	<0.5	>99.5	2	98
8		68	32	85	15	77	23

Table 1. Epoxidation stereochemistry of olefinic alcohols

^aReactions were done on 0.5 mmol olefin and 0.6 mmol molybdenum complex II in 1,2-dichloroethane (5 ml) at 60-70°C and were carried to >80% completion. ^bEmployed 3 mol% molybdenum catalyst I and 1.5 equiv of ^tBuOOH in 1,2-dichloroethane at 60-70°C. ^CCited from ref. 7b and 7d. ^dThe resulting mixture of epoxy alcohols, epoxy acetates, or epoxy alcohol trimethylsilyl ethers were analyzed by glpc on 2 m columns packed with 3% silicon OV-17 or 10% PEG 20M.

The complex II was quite reluctant to react with simple olefins,⁶ however, allylic alcohols were converted easily to α,β -epoxy alcohols in fair yields (60-70% isolated yields, Table 1).⁷ It is worth noting that the stereoselectivities obtained in the reaction with stoichiometric amount of monoperoxo complex are quite different from those in the catalytic epoxidation with ^tBuOOH in the presence of 3 mol% molybdenum compound I. The latter gave similar selectivities to those with Mo(CO)₆-^tBuOOH system.⁸

Alcohol	Reaction Time	Product	Yield ^b (%) 95	
	(h)	Product		
сн ₃ (сн ₂) ₅ сн(он)сн ₃	5	сн ₃ (сн ₂)5сосн3		
cyclododecanol	4	cyclododecanone	97 90 [°]	
4-±-butylcyclohexanol	6	4-±-butylcyclohexanone	83	
3-cholestanol	19	3-cholestanone	73 ^C	
РhCH ₂ 0Н	7	PhCHO	80	
сн ₃ (сн ₂)10сн20н	13	СН3(СН2)10СНО	63	

Table 2. Oxidation of alcohols with the molybdenum complex II^a

^aReactions were performed on 0.5 mmol scale at 85°C. ^bYields were determined by glpc using an internal standard method. CIsolated yields.

A series of primary and secondary alcohols were easily oxidized to the corresponding carbonyl compounds in fair to good yields.⁹ The results are summarized in Table 2. The experimental procedure is illustrated for the preparation of cyclododecanone. A solution of the complex II (0.34 g, 0.6 mmol) and cyclododecanol (92 mg, 0.5 mmol) in 1,2-dichloroethane (5 ml) was heated to reflux for 4 h. Ethereal extracts of the reaction mixture were washed with brine, dried, and concentrated. Purification by silica gel column chromatography gave cyclododecanone (82 mg, 90% yield).

Acknowledgement: We wish to thank the Ministry of Education, Science, and Culture, Japan, for the Grant-in-Aid (#475651). One of us (K. O.) is grateful to professor K. B. Sharpless for his encouragement and to Dr. Kazuhide Tani, Osaka Univ., for helpful discussion.

References and Notes

- 1. F. Triforo, P. Forzatti, S. Preiti, and I. Pasquon, J. Less-Common Met., 36, 319 (1974).
- Similar monooxomolybdenum(VI) complex has been reported. S. E. Jacobson, R. Tang, and F. Mares, *inorg. Chem.*, 17, 3055 (1978).
- 3. Assignment of the complex II structure was based on the following observations. Dioxo compound I showed two very strong infrared absorptions at 906 and 935 cm⁻¹ indicative of eis orientation of the oxo groups,⁴ while the oxoperoxomolybdenum(VI) showed only one oxo absorption at 950 cm⁻¹. Found: C, 54.71; H, 3.42; N, 4.87%. Calcd for C₂₆H₂₀N₂O₇Mo: C, 54.94; H, 3.55; N, 4.93%.
- 4. E. I. Stiefel, "The Coordination and Bioinorganic Chemistry of Molybdenum," in "Progress in Inorganic Chemistry," ed by S. J. Lippard, An Interscience Publication, John Willy &

Sons, Inc., New York (1977), vol. 22, pp. 1-223.

5. Structure of the complex II was established by X-ray diffractometry, with an orangeyellow crystal of dimensions 0.32x0.28x0.24 mm, grown from hexane-CH₂Cl₂ (10:1). Crystallographic data are: $C_{26}H_{20}N_2O_7M_0$, M. W. = 568.39, monoclinic, C_2/c , Z = 8, a = 25.345(4), b = 8.813(1), c = 22.887(3) Å, β = 102.30(1)°, U = 4994.8(10) Å³, $D_x = 1.512 \text{ gcm}^{-3}$, $\mu(Mo K_{\alpha}) = 5.69 \text{ cm}^{-1}$. 4430 independent reflexions with $|Fo| \ge 3\sigma(|Fo|)$, collected on a Rigaku AFC-5 diffractometer with monochromatized Mo K α radiation (0.7107 \breve{A}), were used in the structure analysis. The structure was solved by the heavy-atom method and anisotropically refined by block-diagonal least-squares technique (R = 0.038 and R_w = 0.045). Figure 1 shows a perspective-view of the complex. The Mo atom is surrounded by four 0 atoms (0(1)-0(4)) of hydroxamic acid ligands as well as by three 0 atoms of oxo and peroxo groups (0(5)-0(7)). The crystal contains ca. 30% of inverted structure having oxo and peroxo groups interchanged in Figure 1. The inverted disposition is coincident with the depicted one by rotating itself on the pseudo two-fold axis which contains Mo atom and midpoint of O(1) and O(3). This type of crystallographical positional disorder should account for the shorter 0-0 distance of the peroxo group than the normal value of 1.44 Å. Selected bond distances (Å) and angles (°) with their e.s.d.'s are as follows.

Mo0(5)	1.733(2)	0(6)-Mo~0(7)	38.30(16)
Mo0(6)	1.830(3)	0(1)-Mo-O(2)	74.44(8)
Mo0(7)	1.864(4)	0(3)-Mo-0(4)	73.83(9)
0(6)-0(7)	1.212(5)	Mo-0(1)-C(1)	115.89(18)
Mo0(1)	2.131(2)	Mo-0(3)-C(2)	116.21(19)
Mo0(2)	2.002(2)	Mo-0(2)-N(1)	116.35(16)
Mo0(3)	2.157(2)	Mo-0(4)-N(2)	116.31(19)
Mo0(4)	2.031(2)		

- 6. Molybdenum diperoxo compound such as Mimoun's reagent is known to epoxidize olefins. (a) H. Mimoun, I. Seree de Roch, and L. Sajus, *Tatrahedron*, 26, 37 (1970); (b) K. B. Sharpless, J. M. Townsend, and D. R. Williams, J. Am. Chem. Soc., <u>94</u>, 295 (1972).
- 7. Transition metal catalyzed stereoselective epoxidation of olefinic alcohols has been studied extensively. (a) K. B. Sharpless and R. C. Michaelson, J. Am. Chem. Soc., 95, 6136 (1973); (b) T. Itoh, K. Jitsukawa, K. Kaneda, and S. Teranishi, *ibid.*, <u>101</u>, 159 (1979); (c) E. D. Mihelich, Tetrahedron Lett., 1979, 4729; (d) B. E. Rossiter, T. R. Verhoeven, and K. B. Sharpless, ibid., 1979, 4733.
- 8. Sheldon has reported that the rate of the molybdenum-catalyzed epoxidation with ${}^{
 m t}{
 m BuOOH}$ is independent of the structure of the molybdenum compounds initially added as catalyst. R. A. Sheldon, Recl. Trav. Chim. Pays-Bas, 92, 253, 367 (1973).
- 9. Oxidation of secondary alcohols by molybdenum diperoxo complexes has been reported. S. E. Jacobson, D. A. Muccigrosso, and P. Mares, J. Org. Chem., 44, 921 (1979).

(Received in Japan 25 August 1980)